Bereken die oppervlakte van `n seshoek
`N Seshoek of seshoek is `n veelhoek met ses kante en hoeke. `N Reëlmatige seshoek het ses gelyke sye en hoeke en bestaan uit ses gelyksydige driehoeke. Daar is `n aantal maniere om die area van `n onreëlmatige of gereelde seshoek te bereken. As jy wil weet hoe, volg hierdie stappe.
conținut
stappe
Metode 1
Die oppervlak van `n gereelde seshoek met `n gegewe kant
1
Skryf die formule neer om die oppervlakte van `n seskant te bereken as jy die lengte van `n kant ken. Omdat `n gereelde seshoek uit ses gelyksydige driehoeke bestaan, word die formule vir die vind van die oppervlakte van `n seshoek afgelei van die formule vir die berekening van die oppervlakte van `n gelyksydige driehoek. Die formule hiervoor is: Oppervlakte = (3√3 s2) / 2 waar is die lengte van een kant van die gewone seshoek.
2
Bepaal die lengte van die sy. As jy al die lengte ken, skryf dit neer. In hierdie geval is die lengte van een kant 9 cm. As jy die lengte nie weet maar wel hoe lank die omtrek is, of jy weet die apothema (die lengte van die lyn vanuit die middel van die seshoek wat loodreg staat aan die een kant), dan kan jy nog steeds die lengte van die kant van bereken `n seshoek. Hier kan jy lees hoe om dit te doen:
3
Gee die lengte van die sy in die formule. Omdat jy weet dat die lengte van die een kant van die driehoek 9 is, kan jy dit eenvoudig in die oorspronklike formule invoer. Dit lyk soos volg: Oppervlakte = (3√3 x 92) / 2
4
Vereenvoudig jou antwoord. Vind die waarde van die vergelyking en skryf jou antwoord neer. Onthou dat omdat jy die area bereken, die antwoord in vierkante meter moet wees. Hier kan jy lees hoe jy dit doen
Metode 2
Die oppervlak van `n gereelde seshoek met `n bekende apotema
1
Let op die formule vir die berekening van die area van `n seskant met `n gegewe apotema. Die formule is eenvoudig: Oppervlakte = 1/2 * omtrek * apotema.
2
Skryf die apotema neer. Stel jou voor: die apotema is 5√3 cm.
3
Gebruik die apotema om die omtrek te vind. Omdat die apotema loodreg is aan die kant van die seshoek, vorm dit een kant van `n 30-60-90 driehoek. Die sye van `n 30-60-90 driehoek het die verhouding: xx√3-2x, waar x die lengte van die kortste kant is (teenoor die hoek van 30 grade), x√3 die lengte van die lang kant (teenoor die hoek van 60 grade), en 2x die skuinssy.
4
Voer alle bekende waardes in die formule in. Die omtrek was die moeilikste deel. Al wat jy nou moet doen, is om die apotema en die skets op te los met behulp van die formule:
5
Vereenvoudig jou antwoord. Vereenvoudig die uitdrukking totdat jy al die wortels van die vergelyking verwyder het. Maak seker dat jou finale antwoord in vierkante meter is.
Metode 3
Bereken die oppervlakte van `n ongelyke seshoek met gegewe hoekpunte
1
Maak `n lys van die x- en y-koördinate van alle hoekpunte. As jy die hoekpunte van die seshoek ken, dan is die eerste ding wat jy doen, `n tafel met twee kolomme en sewe rye. Elke ry kry die naam van die ses punte (punt A, punt B, punt C, ens.) En elke kolom kry die naam van die x- of y-koördinate van die punte. Maak `n lys van die x- en y-koördinate van Punt A na Punt F. Herhaal die koördinate van punt A aan die einde van die lys. Kom ons neem die volgende voorbeeld met die formaat Naam: (x, y):
- A: (4, 10)
- B: (9, 7)
- C: (11, 2)
- D: (2, 2)
- E: (1, 5)
- F: (4, 7)
- A (weer): (4, 10)
2
Vermenigvuldig die x-koördinaat van elke punt met die y-koördinaat van die volgende punt. Plaas die resultate regs van die tabel. Voeg dan die resultate bymekaar.
3
Vermenigvuldig die y-koördinaat van elke punt met die x-koördinaat van die volgende punt. Voeg die resultate bymekaar.
4
Trek die tweede som van die eerste som af. Trek 221 van 125. 125 - 221 = -96. Neem nou die absolute waarde van hierdie antwoord: 96. Oppervlakte kan slegs positief wees.
5
Verdeel die berekende verskil met twee. Deur 96 deur 2 te verdeel, kry jy die oppervlak van die onreëlmatige seshoek. 96/2 = 48. Onthou dat die eenheid van jou antwoord die vierkante meter is. Die antwoord op die vraag is dus 48 m2.
Metode 4
Ander metodes om die oppervlakte van `n seshoek te bereken
1
Vind die area van `n seskant waar `n hoekpunt onbekend is. Weet jy dat jy te doen het met `n gereelde seshoek met ontbrekende driehoeke, dan is die eerste ding wat jy doen om die oppervlak te bereken, asof die seshoek voltooi is. Bereken dan eenvoudig die oppervlakte van die driehoeke wat deur die hoekpunte gevorm word en trek hulle van die totale oppervlakte af. Dit lei tot die onreëlmatige seshoek.
- `N Voorbeeld: Het jy bereken dat die oppervlak van die gewone seshoek 60 cm is 2 is en jy weet dat die area van die ontbrekende driehoeke 10 cm is2 is dan die oppervlak van die onreëlmatige seshoek: 60 cm2 - 10 cm2 = 50 cm2.
- Weet jy dat die hexagoon exact één driehoek mis, dan is dit ook moontlik om die oppervlakte van die onreëlmatige seshoek te vind deur die oppervlakte van die gereelde seshoek oftewel die totale oppervlakte te vermeerder met 5/6, omdat die onreëlmatige hexagoon `n gebied beslaan wat bestaan uit 5 van die 6 driehoeke van die gewone seshoek. Mej twee, vermenigvuldig met 4/6, ensovoorts.
2
Breek `n onreëlmatige seshoek in ander driehoeke op. Dit is moontlik dat die onreëlmatige seshoek bestaan uit vier driehoeke met `n oneweredige vorm. Om die hele oppervlak van hierdie seshoek te vind, moet jy die oppervlak van elke driehoek vind en bymekaar voeg. Daar is verskeie maniere om die oppervlakte van `n driehoek te vind, afhangende van wat jy weet.
3
Soek ander vorms in die onreëlmatige seshoek. As jy nie driehoeke kan vind nie, kyk of jy ander vorms kan vind - miskien `n vierkant of `n reghoek. Sodra u die ander vorms ontdek het, voeg die oppervlaktes bymekaar om dié van die hele seshoek te bereken.
Deel op sosiale netwerke:
Verwante
- Bereken die oppervlakte van `n vierhoek
- Bereken die apotema van `n seshoek
- Bereken die hoogte van `n driehoek
- Bereken die lengte van `n lyn deur die afstandformule te gebruik
- Bereken die omtrek van `n vierkant
- Bepaal die area van gereelde polygone
- Bereken die oppervlakte van `n driehoek
- Bepaal die oppervlakte van `n halfsirkel
- Bereken die oppervlakte van `n reghoek
- Bereken die oppervlakte van `n diamant
- Bereken die oppervlakte van `n trapesium
- Bereken die oppervlakte van `n veelhoek
- Bereken die oppervlakte van `n vierkant
- Bereken die oppervlakte van `n vyfhoek
- Teken `n gereelde seshoek
- Bereken die oppervlakte van `n reghoekige prisma
- Bereken die volume van `n kubus
- Bereken die volume van `n piramide
- Bereken die volume van `n prisma
- Bereken hoeke
- Bereken vierkante sentimeter